

Porous materials:

from acoustic absorption to strut elasticity

Ludovic Labelle, Bert Roozen, Christ Glorieux

Laboratory of Acoustics

Soft Matter and Biophysics

Department of Physics and Astronomy, KU Leuven,

Celestijnenlaan 200D, B3001 Heverlee,

Belgium

Jan Vandenbroek

Huntsman Polyurethanes, Everslaan 45, 3078 Everberg, Sterrebeek

KU LEUVEN

Applications of porous materials and their importance for room and building acoustic quality

Porous materials: from acoustic absorption to strut elasticity

Osso Normal Osteoporose

Porous materials : applications and effects in room acoustics

Reflection/transmission model

0.16V

Porous materials : applications and effects in room acoustics

Porous materials : applications and effects in building acoustics

Reflection/transmission model

Acoustic parameter \circ absorption α

Porous materials : applications and effects in vibration damping

VISCOELASTIC POLYURETHANE FOAM

Slow recovery after compression

- mattresses
- pillows,
- wheel chair pads
- furniture

HIGH RESILIENCE POLYURETHANE FOAM

Non-uniform and open cell structure

- high resilience foam
- bedding
- furniture
- footwear

MICROCELLULAR POLYURETHANE FOAM

Very fine cells: light but strong

- Furniture arm rests
- Wheel chair wheels
- Replacement of plastic

- o spring constant
- o real and imaginary part of
 - longitudinal modulus
 - shear modulus

Mass-spring model

Measurement of the acoustic performance of macroscopic porous surfaces

Determination of acoustic absorption

Geometry	Method
1. Random incidence	Reverberation
2. Perpendicular incidence	Kundt tube
3. Incidence under particular angle	a. Spark method
	b. Acoustic holography

Determination of acoustic absorption

	Geometry				Me	ethod	
	1. Random incidence	ISO-	-354		Rever	beration	
Measureme	ent of the reverberation time	ole		v v	Vithout sample: $T_{60,without} = \frac{0}{\alpha_{walls}S_{walls}}$ Vith sample: $T_{60,with} = \frac{0.16V}{\alpha_{walls}S_{walls} + \alpha}$ sample $= \frac{1}{S_{floor}} \left(\frac{0.16V}{T_{60,with}} - \alpha_{walls}S_{walls} \right) =$	$\frac{0.16V}{I_{ix} + \alpha_{floor} S_{floor}}$ $\frac{V}{I_{sample} S_{floor}}$ $= \frac{1}{S_{floor}} \left(\frac{0.16V}{T_{60,with}} - \frac{0.16V}{T_{60,without}} + \alpha_{floor} S_{floor} \right)$	
		h sam	90 – signa	al hvtdurg	5 dB	L	87 dB
		wit ure level [dB]	80	dB	30 dB	measurement of <i>T</i> ₃₀ [s] -5dB tot -35dB + interpolation	S/N = 45 dB
P	1	und Pressu	50 — 40 —			background noise	42 dB
		: sample So	30 <u> </u>		<i>I</i> ₃₀ = 1.8 s ← Reverberation tim	e	
		without	10 – 0	(time [s]) 1.0	2.0	

Determination of acoustic absorption

Geometry	Method
2. Perpendicular incidence ISO-10534	Kundt tube

Determination of acoustic absorption

	Geometry	Method
	3. Incidence under particular angle	a. Spark method
		Measurement of the reflection coefficient
A	Spark source The spark source provides an electrical pulse and produces electromagnetic waves.	direct wave reflected wave
L	Microphone The microphone receives the acoustic signal and	

Pre-amplifier

The pre-amplifier limits signal degradation caused by noise interference.

electrical signal.

converts it into an

Sound Card

The sound card can manage all sounds received and send them to a computer.

Determination of effective porous material parameters

Geometry	Method
3. Incidence under particular angle	b. Acoustic holography

Measurement of the reflection coefficient: Tamura method

STUDY OF THE SOUND FIELD IN AND ABOVE POROUS MATERIALS-APPLICATION TO CHARACTERIZATION OF SOUND ABSORBING MATERIALS

PhD thesis Laurens Boeckx, KU Leuven, 2005

Measurement of the bulk properties of porous materials

Determination of structural parameters underlying the acoustic absorption

Geometry	Method
1. Compressive modulus of the frame	mass-spring/DMA
2. Shear modulus of the frame	mass-spring
3. Porosity	ultrasound reflection
4. Tortuosity	speed of sound
5. Thermal and viscous characteristic lengths	speed of sound
6. Flow resistivity	pressure-flow

Biot – Johnson – Allard - model

J. F. Allard and N. Atalla, *Propagation of Sound in Porous Media : Modelling Sound Absorbing Materials*, Elsevier (first edition 1993): Wiley and Sons. Ltd., New York, (second edition 2009)

Philippe Leclaire. Characterization of porous absorbent materials. Société Française d'Acoustique. Acoustics 2012, Apr 2012, Nantes, France. <hal-00810634>

Determination of structural parameters underlying the acoustic absorption

Geometry	Method
1. Compressive modulus of the frame	mass-spring/DMA
2. Shear modulus of the frame	mass-spring
3. Porosity	ultrasound reflection
4. Tortuosity	speed of sound
5. Thermal and viscous characteristic lengths	speed of sound
6. Flow resistivity	pressure-flow

Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence

Z. Fellah et al, J. Acoust. Soc. Am. 113(5),2424(2003)

Determination of structural parameters underlying the acoustic absorption

Geometry	Method
1. Compressive modulus of the frame	mass-spring/DMA
2. Shear modulus of the frame	mass-spring
3. Porosity	ultrasound reflection
4. Tortuosity	speed of sound
5. Thermal and viscous characteristic lengths	speed of sound
6. Flow resistivity	pressure-flow

Tortuosity α_{∞} , viscous (Λ) and thermal (Λ ') characteristic length

$$\begin{split} \alpha_{\infty} &= \frac{1/V \int_{V} v^{2} dV}{(1/V \int_{V} \overrightarrow{v} \ dV)^{2}} \\ n^{2} &= \alpha_{\infty} [1 + \delta \cdot (\frac{1}{A} + \frac{\gamma - 1}{A'B})] \\ n &= \frac{c_{air}}{c_{sample}} \\ \delta &= \sqrt{\frac{2\eta}{\rho_{f}\omega}} \\ \end{split}$$
 refractive index

Prandtl nr

 B^2

Determination of structural parameters underlying the acoustic absorption

Geometry	Method
1. Compressive modulus of the frame	mass-spring/DMA
2. Shear modulus of the frame	mass-spring
3. Porosity	ultrasound reflection
4. Tortuosity	speed of sound
5. Thermal and viscous characteristic lengths	speed of sound
6. Flow resistivity	pressure-flow

Mass-spring resonance experiment

Dynamic mechanical analysis

Measurement of the microscopic properties of porous struts and membranes

Characterization of porous struts and memory anes

Approach:

- Local excitation: small source, short wavelength λ, high frequency f_{exc}
- Local detection:
 - CCD pixel size << λ , stroboscopic illumination frequency ~ f_{exc}
 - vibrometer probe spot size <<λ
- Local guided wave velocity and damping \rightarrow local real and imaginary part of elastic modulus

Challenge:

- Compromise between
 - Small wavelength λ: < microscopic entity of interest
 - Long wavelength λ : frequency f=c/ λ in the audio range

Strategy:

Exploit time-temperature superposition principle

Porous materials: from acoustic absorption to strut elasticity

Time-temperature superposition principle

http://www.open.edu/openlearn/science-maths-technology/science/chemistry/introduction-polymers/content-section-5.3.1

Porous materials: from acoustic absorption to strut elasticity

DMA measurement on a nylon fiber

Vibrometry measurement on a nylon fiber

Porous silicon

Porous silicon

R.B. Bergmann et al., Solar Energy Materials & Solar Cells 74 (2002) 213– 218 Photoacoustic and photothermal phenomena: extracting thermal and elastic information from spatial and temporal dependence of temperature and displacement

2D, non-uniform excitation pattern

- \Rightarrow information on **transport properties**:
- ⇒ thermal diffusivity/diffusion length
- & acoustic velocity and damping/wavelength

Fast and sensitive displacement detection

Heterodyne diffraction method

Characterization of porous silicon

c' = $(c_{11}-c_{12})/2 = 27.5 \pm 0.25$ GPa $c_{44} = 40.1 \pm 0.1$ GPa

Characterization of porous silicon

