

Utrecht University

Upscaling of Transport Properties; Reacting Porous Media

Amir Raoof, a.raoof@uu.nl

Utrecht University

Problem Examples

Pore Scale vs. Filed (Continuum) Scale

- Θ porosity
- c species concentration
- D is the dispersion coefficient
- v is the average velocity that solute is moving
- R describes reactions, and λ adsorption retardation

$$\lambda \frac{\partial \left(\theta c^{k}\right)}{\partial t} = \nabla \cdot \left(\theta D \nabla c^{-k}\right) - \nabla \cdot \left(\theta v c^{-k}\right) + \sum \overline{R}_{k}$$

Macro Scale Parameters

$$\frac{\partial \left(c^{k}\right)}{\partial t} = \nabla \cdot \left(D_{mol} \nabla c^{k}\right) - \nabla \cdot \left(vc^{k}\right) + \sum R_{k}$$

No porosity!! No Dispersion!!

- c species concentration
- D Diffusion coefficient
- v pore velocity that solute is moving
- R describes reactions

Field (continuum) scale

Pore scale

Pore Space Representation

Bentheimer Sandstone – Data from Gent University Sample size 3mm each side, voxel size is 4.28 µm

Capturing the Soil/Rock Topology

Multi-Directional Random Structure

Raoof, Amir, and S. Majid Hassanizadeh. "A new method for generating pore-network models of porous media." Transport in porous media 81.3 (2010)

Governing Equations

Modeling Flow and (Adsorptive) Transport

- Raoof, Amir, S. Majid Hassanizadeh, and Anton Leijnse. "Upscaling transport of adsorbing solutes in porous media: Pore-network modeling." Vadose Zone Journal 9.3 (2010): 624-636.
- Raoof, Amir, and Seyed Majid Hassanizadeh. "UPSCALING TRANSPORTOF ADSORBING SOLUTES IN POROUS MEDIA." Journal of Porous Media 13.5 (2010).

From Saturated to Partially-Saturated

Raoof, A., and S. M. Hassanizadeh. "A new formulation for pore-network modeling of two-phase flow." Water Resources Research 48.1 (2012). Raoof, A., and S. M. Hassanizadeh. "Saturation-dependent solute dispersivity in porous media: Pore-scale processes." *Water Resources Research* (2013).

CO₂ Leakage Through Wellbore Cement

One of the primary concerns is that chemical degradation of the cement used to seal wellbores may provide or enhance preferential pathways for CO_2 escape.

Pore Network Modeling Setup for Cement

Equilibrium constants and enthalpies of reaction

	÷ •		
No.	equilbrium	<i>K</i> _{25°C}	$\Delta H^0(\text{kJ/mol})$
1	$H_2O \Longrightarrow H^+ + OH^-$	$1.007 \times 10^{-14} a$	
2	$\overline{CO}_2(aq) \Longrightarrow H_2CO_3^*$	3.390×10^{-2} b	-20.37°
3	$H_2CO_3^* \Longrightarrow H^+ + HCO_3^-$	$4.446 \times 10^{-7 b}$	7.7^{c}
4	$HCO_3^- \Longrightarrow H^+ + CO_3^{2-}$	4.688×10^{-11} b	14.9 ^c
5	$CaCO_3 \Longrightarrow Ca^{2+} + CO_3^{2-}$	$3.360 \times 10^{-9} a$	-10.63^{a}
6	$Ca_2^+ + HCO_3^- \Longrightarrow CaHCO_3^+$	$10.0 \ ^{b}$	25.82^{d}
7	$Ca(OH)_2 \rightleftharpoons Ca^{2+} + 2OH^-$	$5.020 \times 10^{-6} a$	-16.94^{a}
8	$Ca_2^+ + OH^- \implies CaOH^+$	19.95 ^b	7.23^{e}

Rate equation for calcite dissolution/precipitation

$$Rate = A_c (k_1 a_{\mathrm{H}^+} + k_2 a_{\mathrm{H}_2 \mathrm{CO}_3^*} + k_3) \left(1 - \frac{a_{\mathrm{Ca}^{2+}} a_{\mathrm{CO}_3^{2-}}}{K_{eq}} \right)$$
 Li et al., 2008

Rate equation for portlandite dissolution/precipitation:

$$Rate = A_{p}k_{p}\left(1 - \frac{a_{Ca^{2+}}(a_{OH^{-}})^{2}}{K_{eq}}\right)$$

Wellbore cement degradation

Creation of different distinct zones with different porosities.

Raoof, A., et al. "Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions." International Journal of Greenhouse Gas Control (2012).

CO₂ Penetration Depth

Time [month]

Raoof, A., et al. "Pore-scale modeling of reactive transport in wellbore cement under CO2 storage conditions." International Journal of Greenhouse Gas Control (2012).

Distance [mm]

Reactive Transport in CO₂ Storage Rock Reservoirs

Potential Escape Mechanisms

A. CO ₂ gas pressure exceeds capillary pressure & passes through siltstone	B. Free CO ₂ leaks from A into upper aquifer up fault	C. CO ₂ escapes through 'gap' in cap rock into higher aquifer	D. Injected CO ₂ migrates up dip, increases reservoir pressure & permeability of fault	E. CO ₂ escapes via poorly plugged old abandoned well	F. Natural flow dissolves CO ₂ at CO ₂ / water interface & transports it out of closure	G. Dissolved CO ₂ escapes to atmosphere or ocean
---	--	---	---	--	--	---

IPCCC website: publications and data

Uniform Dissolution, High Flow Rate (High Pe)

5 days

8 days

Uniform Pore Space Evolution, High Flow Rate (High Pe)

Evolution in Pore Size Distribution, High Flow Rate (High Pe)

We can observe the evolution in pore size distribution `during the dissolution process.

Non-Uniform Dissolution, Low Flow Rate (Low Pe)

Non-Uniform Pore Space Evolution, Low Flow Rate (Low Pe)

Evolution in Pore Size Distribution, Low Flow Rate (Low Pe)

Pore Sizes Distribution

Porosity-Permeability Relation

Raoof, A., et al. "PoreFlow: A complex pore-network model for simulation of reactive transport in variably saturated porous media." Computers & Geosciences 61 (2013): 160-174.

Dissolution in Carbonates; Wormholing

